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ABSTRACT 

Theperformanceof Underwater SensorNetworks (UWSNs) can be severely 
affectedbythedynamicsof underwater environment.Asurfacesinkisusuallydeployedatapre-specifiedlocation to maximize one or 
more performance metrics. The low sound speed in water makes propagation 
delay(PD)basedrangeestimationattractiveforunderwateracousticlocalization(UWL). Due to the long channel impulse response 
and the existence of reflectors, PD-based UWALsuffersfromsignificant degradation when PD measurements of non line-of-sight 
(NLOS) communication links are falsely identified as line-of-sight (LOS). In this project, Adaptive Decision Tree Classifier 
classifies LOS and NLOS links. It uses the decisions of multiple aspects of an object through a tapped delay line mechanism to 
impact the final decision of the current aspect. This system minimizes the error of the classifier.  First, by comparing signal 
strength-based and PD-based range measurements, we identify object-related NLOS (ONLOS) links, where signals are reflected 
from objects with high reflection loss. In the second step, we use an algorithm to classify PD measurements into: LOS and sea-
related NLOS (SNLOS), and to estimate the statistical parameters of each class. Both our simulation and sea trial results 
demonstrate a high detection rate of ONLOS links, and accurate classification of PD measurements into LOS and SNLOS.
Keywords— line-of-sight, non line-of-sight, Object-related NLOS (ONLOS) time-of-arrival classification, Underwater acoustic 
localization (UWAL), 

------------------------------------------------------------------------------------------------------------------ 
1. INTRODUCTION 
 
Underwater acoustic communication networks (UWAN) 
are envisaged to fulfill the needs. The data derived from 
UWAN is typically interpreted .With reference to a 
node’s location, for example, reporting an event 
occurrence, tracking a moving object or monitoring a 
region’s physical conditions.How-ever,localization for 
underwater nodes is nontrivial. Since GPS signals do not 
propagate through water, localization of un localized 
nodes is often based on underwater acoustic 
communication and triangulation using 
asetofanchornodeswithknownlocations.Thisunderwaterac
ousticlocalization(UWAL) typically employs propagation 
delay (PD) measurements for range estimation, i.e., time 
of arrival (TOA) or time difference of arrival (TDOA) of 
received signals. Existing UWAL schemes, for example, 
implicitly assume that PD measurements correspond to 
the line-of-sight (LOS) link between the transmitter and 
receiver. However, signals can arrive from non LOS 
(NLOS) communication links in several ways, as 
illustratedinFig.1.Forthenodepairs(u;a2)and(u;a3),sea 
surface and bottom reflections links (referred to as sea-

related NLOS (SNLOS)) .Finally, between nodes u and 
a2, there is also an ONLOS link due to a ship. While it is 
expected that power attenuation in the LOS link is smaller 
than in NLOS links, it is common that the LOS signal is 
not the strongest. The underwater acoustic channel 
(UWAC) consists of groups of NLOS links with small 
path delay, but significant phase differences, often 
resulting in negative superposition with   LOS and NLOS 
links are smaller than the system resolution for path 
separation) as well as positive superposition between 
NLOS links. For example, using basic trilateration, the 
localization errorgrowsquadratic ally with ranging offset, 
and azeromeanGaussian distributed offset with a standard 
deviation of only 2 msec would cause an average error of 
6 merror One of the greatest challenges in communicating 
through the UWAC is the permanent motion of nodes at 
sea. This is because of mobility of nodes, such as for 
autonomous underwater vehicles (AUV), but also due to 
ocean currents. The continuous motion changes both the 
distance between transmitter and receiver and the channel 
impulse response of a communication link, including 
shifts in the arrival times and energy of signals received 
through different propagation paths. The proposed 
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classification can improve the accuracy of UWAL by 
rejecting or correcting NLOS-related PD measurements, 
or by using them to bound range estimation. To 
implement our classification, we present two-step 
algorithm that classifies measurements into three classes: 
LOS, SNLOS, and ONLOS. We first identify ONLOS-
related PD-measurements by comparing PD-based range 
estimations with range estimations obtained from 
received-signal- strength (RSS) measurements. The 
algorithm requires only a lower bound for RSS-based 
distance estimations a constrained adaptive decision tree 
classifier to classify the remaining PD measurements into 
LOS and SNLOS. Through a clustering of PD 
measurements, we mitigate changes in propagation delay 
due to mobility of nodes. The EMa 
lgorithmalsoestimatesthestatisticalparameters of both 
classes, which can be used to improve the accuracy of 
UWAL. First, our algorithm relies on significant power 
absorption due to reflection loss in ONLOS links, which 
are typical in the underwater environment. Second, we 
assume that the difference in propagation delay between 
signals traveling through SNLOS and LOS links which 
inacceptable in the UWAC due to the low sound speed in 
water (approximately 1,500 m/sec). Third, our algorithm 
is particularly beneficial in cases where NLOS paths are 
often mistaken for the LOS path, which occurs in UWAL, 
where the LOS path is frequently either not the strongest 
or nonexistent .Last ,the variance of PD measurements 
originating from SNLOS links is greater than that of 
measurements originating from LOS, which fits channels 
with long delay spread such as the UWAC. PD 
measurements for range estimation can be obtained1) 
From the symbols of a received data packet or 2)From 
multiple impulse-type signals transmitted in a short period 
of time. The PD is then estimated by setting a detection 
threshold to identify the arrival of the first path, a fixed 
threshold is set based on the channel noise level and a 
target false alarm probability. An adaptive threshold is 
used based on the energy level of the strongest path. In 
direct sequence spread spectrum (DSSS) signals, which 
have narrow autocorrelation, are transmitted to allow 
better separation of paths in the estimated channel 
response. The additional anchor nodes were used to 
resolve such ambiguities. a three-phase protocol is 
suggested for this problem. First, an ambiguity-free sub 
tree of nodes is determined. Then, localization based on 
triangulation is performed where the node is first assumed 
to be located in the center of a rectangular area. Finally, a 
refinement phase is performed using a Kalman filter to 
mitigate noise arising from ranging. For example, when 
there are insufficient anchor nodes or when the location of 
anchor nodes is almost collinear. The problem of 
localization when all measurements are obtained from 
NLOS links where the relationship between anchor node 
distances and NLOS factor is used to improve 
localization. The protocols are only applicable when a 

large number of anchor nodes are available. NLOS factor 
(i.e., the difference between the arrival times of the NLOS 
and LOS-based signals) is estimated using a maximum 
likelihood estimator based on an attenuation model, and 
NLOS-based measurements are incorporated after a factor 
correction instead of being rejected. However, to the best 
of our knowledge, no prior work considered a machine 
learning approach for NLOS and LOS classification of 
multiple PD measurements. 
 

 
 
 
Fig. 1. Illustration of various types of communication 
links: LOS, SNLOS, 
and ONLOS links. 
 
II SYSTEM SETUP AND ASSUMPTIONS 
 
From fig .1 The system comprises one or more 
transmitter-receiver pairs (u,aj), exchanging a single 
communication packet of N symbols or impulse signals, 
from which a vector	X = [x , … . , x ] of PD 
measurements X , and corresponding measured time t  is 
obtained using detectors 

TL (	d )
= TL 	d ,
+ TL 	d , + RL 

 
 

x = x + n  
Where x LOS is the PD in the LOS link, and ni is zero-
mean (for LOS links) or nonzero-mean (for SNLOS or 
ONLOS links) measurement noise. Let dLOS denote the 
distance corresponding to x LOS, i.e.,dLOS = x LOS c. 
For the purpose of obtaining RSS-based range 
measurements, In this paper, we focus on transmission 
over short range(on the order of a few km), for which 
refraction of acoustic waves is negligible and propagation 
delay in the LOS link is shorter than in the NLOS links. 
For each measurement		x , a PD-based estimate, d , is 
obtained by multiplying xi with an assumed propagation 
speed, c. In addition, based on an attenuation model for an 
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LOS link. we obtain RSS-based range estimates, d ,
i = 1, … . . , Nfrom the received signals. 
 
A .RSS-BASED RANGE MEASUREMENTS 

 
Let d 		denote the distance corresponding to 
X 	i.e.,	d = X . C. 
 

 
 
WherePL(d ) = γlog (d )		is the propagation 
loss,AL(d ) = α 			is the absorption loss, γ and α 
are the propagation and absorption coefficients, 
respectively, and ∈ is the model noise assumed to be 
Gaussian distributed with zero mean and variance φ. 
Considering the simplicity of the model, we do not 
directly estimate d but rather estimate a lower 
bound		d , , for which we apply upper bounds  
γ		and	α according to the expected underwater 
environment. 
Foran ONLOS link with distance,		d =	d +
	d   where	d  and	d   are the distance 
from source to reflector and from reflector to receiver, 
respectively, we assume that the power attenuation in 
logarithmic scale is given by Burdic[27] 

TL (	d )
= TL 	d ,
+ TL 	d , + RL 

 
Where RL is the reflection loss of the reflecting object, 
whose value depends on the material and structure of the 
object and the carrier frequency of the transmitted signals. 
Since RL is often large, and due to the differences 
between models (2) and (3) we further assume that 

TL (	d ) ≫ TL (	d ) 
 
B .PDF FOR PD MEASUREMENTS 
 
Since we assume changes in	X  are bounded by a small 
transmitter-receiver motion during the time X is obtained, 
we can model the PDF of the noisy measurement xi as a 
mixture of M = 3 distributions, corresponding to LOS, 
SNLOS, and ONLOS links, such that (assuming 
independent measurement noise samples 
		P(X|θ) = 	 π ∈

∑ k p(x |ω ) 
Where θ = (ω , K , … . ,ω , K )are the parameters of the 
m hdistribution, andK (∑ K = 1) is the a-priori 
probability of the m hdistribution. 
Clearly,	P(X|θ) depends on multipath and ambient noise 
in the UWAC, as well as on the detector used to estimate 
xi. While recent works used the Gaussian distribution 
for	P(X |ω ),since multipath and ambient noises are hard 
to model in the UWAC, we take a more general approach 

and model it according to the generalized Gaussian PDF, 
such that	 
												P(X |ω ) =

Γ( )
e (| |)  

The actual distribution of PD in the LOS and NLOS links, 
the use of parameter β 	gives our model a desired 
flexibility, with		β = 1,	β = 2,and β → ∞ 
corresponding to Laplace, Gaussian, and uniform 
distribution, respectively. We assume that PD 
measurements of NLOS links increase the variance of the 
elements of X. Thus, if ς 	, ς ,and , ς 		are the respective 
variance of measurements related to the LOS, SNLOS, 
and ONLOS links, then we have,																		ς < ς , m =
2,3  
Since, for the PDF (6), 

ς = (σ )
Γ( 3
β )

Γ( 1
β )

 

and by (8), ς  does not change much with  β constraint 
(7) can be modified to 
																					σ <	σ 	,  m=2,3 
Furthermore, let TLIR be the assumed length of the 
UWAC impulse response, which is an upper bound on the 
time difference between the arrivals of the last and first 
paths. 
																								 ς 	< T ,		m = 1,2,3 
Moreover, the propagation delay through the LOS link is 
almost always shorter than those for any NLOS link. 

Hence, we have 

v < v < v + T 	, m = 2,3	 

Clearly, the more separable PD measurements from LOS 
and NLOS links are (i.e., the propagation delay difference 
is larger), the better the classification will be. Since the 
channel impulse response is longer for deeper channels, 
classification accuracy is expected to improve with depth. 

C. REMARK ON ALGORITHM STRUCTURE 
 

A two-step approach to classify PD measurements into 
LOS, SNLOS, and ONLOS. First, assuming large 
attenuation in an ONLOS link, we compare PD-based and 
RSS-based range estimates to differentiate between 
ONLOS and non-ONLOS links. Then, assuming PDF (6) 
for PD measurements, we further classify non-ONLOS 
links into LOS and SNLOS links. 
The reason for separating classification of ONLOS and 
SNLOS links is insufficient information about the 
distribution of the two link types. For example, delay in 
ONLOS links may be similar to or different from that of 
SNLOS links. In the former case, classification should be 
made for M= 2 states, while for the latter three states are 
required. Since a mismatch in determining the number of 
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states may lead to improper classification, we rely on the 
expected high transmission loss in ONLOS links to first 
identify these links. Furthermore, a separate identification 
of ONLOS links can be used as a backup to our LOS/ 
NLOS classifier. That is, we can still identify the link as 
ONLOS even when the channel is fixed, and thus PD 
measurements originate from a single link-type. In the 
following sections, we describe our two-step approach for 
classifying PD measurements. 

III. STEP ONE: IDENTIFYING ONLOS LINKS 
 

We identify whether measurement     x ∈ X   is 
ONLOS-related based on three basic steps as 
follows: 

 Estimation of d :  We first obtain the PD-based 
range estimation as 	d = c. x  

  Estimation of d ,  :  Next, assuming 
knowledge of the transmitted power level, we 
measure the RSS for the i h	received 
signal/symbol, and estimate	d , 	,replacing 
γ		and	α with upper bounds γ and α , 
respectively. 

  Thresholding :  Finally, we compare 
d with		d , ,.If  d , > d    ,then	x   is 
classified as ONLOS. Otherwise, it is determined 
as non-ONLOS. 

The RSS-based range estimation, 		d ,   is obtained 
from an upper bound for an attenuation model (2), i.e., 
from applying an attenuation model for an LOS link to an 
ONLOS link. Since the latter is expected to have a much 
larger power attenuation than the used model, it 
followsthat		d ,  would be much larger than d  
.Similarly, consider a non-ONLOS link (i.e., LOS or 
SNLOS).Here, since we use an upper bound for the 
attenuation model, we expect to be smaller than d  
.Next, we analyze the expected performance of the above 
ONLOS link identification algorithm in terms of 1) 
detection probability of non-ONLOS links,P 	  
and    2) detection  
probability of ONLOS links, P 	  .  
To this end, since explicit expression for dLOS cannot be 
obtained from, in the following, we use the upper bound 
d , such that, 
																																	 ( , ) =  

 is a tight bound when the carrier frequency is low or 
when the transmission distance is small. 
 
A .Classification Of Non-Onlos Links 
 

For non-ONLOS links, we expect d , 			 ≤.d  Thus, 
since by bound 
p (d , 			 ≤.d ) ≥	p (d , 			 ≤.d ), and 
substituting, we get 

P 	 ≥ 1− Q		
(γ − γ)(d − α d

1000)
∅  

where Q(x)  is the Gaussian Q-function. 
 
B .Classification of ONLOS Links 
 

When the link is ONLOS, we expect  d , ≥  
d   . Then, substituting, and 
since	p (d , 			 ≤.d )p (d , 			 ≤.d ),  we get 

	P 	 Q{(γ log (d )
− γlog d , 	d , 	

− 	α
d
1000 − RL}/{∅}) 

Next, we classify non-ONLOS links into LOS and 
SNLOS links. 

C. STEP 2: CLASSIFYING LOS AND SNLOS LINKS 
 
After excluding ONLOS-related PD measurements in 
Step 1,the remaining elements of X , organized in the 
pruned vector X , are further classified into LOS ( m= 1 ) 
and SNLOS (m = 2 ) links and their statistical distribution 
parameters,ω , are estimated. Before getting into the 
details of our LOS/SNLOS classifier, we first explain its 
basic idea. 

 
IV.BASIC  IDEA  
 
The underlying idea of our approach is to utilize the 
expected variation in link type of PD measurements due 
to mobility of nodes at sea. After identifying ONLOS 
links, this variation means that our set includes PD 
measurements of different values and link types. This 
allows us to use a machine learning approach to classify 
the measurements into two classes, LOS and NLOS. For 
this purpose, we use the adaptive e decision tree classifier 
algorithm. While using Decision Tree Classifiers (DTC's) 
are used successfully in many diverse areas such 
as radar signal classification, character recognition, 
remote sensing, medical diagnosis, expert systems, and 
speech recognition, to name only a few. Perhaps, the most 
important feature ofDTC's is their capability to break 
down a complex decision-making process into a 
collection of 
simpler decisions, thus providing a solution which is often 
easier to interpret. EM to classify measurements samples 
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into distinct distributions is a common approach, here the 
distribution parameters should also satisfy constraints, 
where the two latter constraints introduce dependences 
between the parameters of the LOS and NLOS classes. 
Furthermore, we incorporate equivalence constraints to 
group measurements of similar values into clusters which 
elements are classed to the same link type, thereby 
mitigating shifts in the value of X  due to nodes’ 
mobility. As we show later on, this result in a non convex 
maximization of the log-likelihood functions. For this 
reason, we present a heuristic suboptimal algorithm .In 
the following, we start by formalizing the equivalence 
constraints, and formulating the log-likelihood function 
.Next, we formulate a constrained optimization problem 
to estimate the distribution parameters, and present our 
heuristic approach to efficiently solve it. Given this 
estimate, we calculate the posterior probability of each 
PD measurement belonging to the LOS and SNLOS class, 
and classify the elements of X  accordingly. Finally, we 
use decision tree classifier to classify the accurate 
measurements. 

A .Equivalence Constraints 
 
In setting equivalence constraints, we assume that the 
identity and delay of the dominant channel path, used for 
PD detection, is constant within a given coherence time, 
T  ,and that for a bandwidth B of the transmitted signal, 
system resolution is limited by ∆T = . PD measurements 
satisfying equivalence constraints are collected into 
vectors		∧ 	;	l 1; ...;L, where L denotes the number of such 
equivalence sets. Each PD measurement is assigned to 
exactly one vector, i.e.,			∧ 	 have distinct elements. To 
formalize this, we determine X  (recall that measurement 
X  corresponds to measurement timet ) andX    being 
equivalent, denoted as X ⇔ X  ,if 

|t − t | ≤ T  

|x − x | ≤ ∆T 

To illustrate this,	X  ,	X     let and X  correspond to the 
same class (either LOS or NLOS), such thatX  ,	X   and. X  
, X   This process continues until no two vectors can be 
merged. As a result, we reduce the problem of 
classifyingX  ∈ X   into classifying Λ , which account for 
resolution limitations and node drifting. 
B .Formalizing the Log-Likelihood Function 
 

Let the random variable λ 	be the classifier of	∧ 	, such 
that 	∧ 	if is associated with class m;		m ∈ {1,2}, then	λ =
m .Also	λ = [λ , … , λ ] Since elements in X  are 
assumed independent, 

Pr	(λ = m|⋀ ,θ ) =
k 				p(⋀ |ω )

p(⋀ |θ ) 	 

=
k 				∏ ⋀ p(x |ω )
∑ k ∏ ⋀ p(x |ω )

 

From this we can write the expectation of the log-
likelihood function with respect to the conditional 
distribution λ of given	X and the current estimate θ  as 

L(θ|θ ) = E[ln	(Pr(X , λ|θ))|X ,θ ] 

= Pr	(λ = m|⋀ ,θ ) lnp(x
⋀

|ω )

+ Pr(λ = m|⋀ ,θ )lnk  

Then we calculate  Pr(λ = m|⋀ ,θ )     

                            
		Pr λ = 1	 ⋀ ,θ > Pr λ = 2	 ⋀ ,θ      

			K =
1
L Pr λ = m ⋀ ,θ ,					m = 1,2 

 
C. Estimating the Distribution Parameters 
 								ω   and	ω  
 

To estimate	ω , we consider only the first term on the 
right-hand side, which for the is given by 

( , , ) = = ⋀ ,

∈⋀

− ln	(2 )− Γ
1

−
| −  

We find   ω  by solving the following optimization 
problem  

ω ,ω = argmin , ,
− f( v ,σ ,β ) 

          s.t:v ≤ v ≤ v + T  
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The convexity of	f(v ,σ ,β )	depends on		β , 
σ − σ ≤ 0 

 

σ
Γ 3
β

Γ 1
β

− T ≤ 0, m = 1,2 

Next, we use an algorithm to obtain the initial 
estimation,	θ  whose accuracy affects the above 
refinement as well as the convergence rate of the EM 
algorithm. 
 
D. Forming Initial Estimation  
 
Our algorithm to estimate θ  is based on identifying a 
single group ⋀ ∗, whose elements belong to the LOS class 
with high probability, i.e.Pr	(λ ∗ = 1) ≈ 1. Then used as a 
starting point for the K-means clustering algorithm, 
resulting in an initial classification λ 	for ⋀ , l = 1, … , L 
to form two classified sets X ,				m	 = 1,2. the mean, 
variance, and kurtosis of the elements in vectorX  
denoted as	E[X ] , Var[X ] and K[X ] respectively, to 
estimate θ  using the following	, 
| |
| | = k 	, E[X ] = v 			, Var[X ]toestimate θ  using 
the following properties for distribution (6): 

=
Γ 3

Γ 1 		 , [ ] 

	= 	
Γ 5 Γ 1

Γ 3
− 	3 

We assume that σ < σ  there is a small difference 
between measurements of the LOS link, compared to 
those of SNLOS links. Then we use the attribute to 
identify group λ ∗   by filtering X and calculating the first 
derivative of the sorted filtered elements. Group λ ∗  
corresponds to the smallest filtered derivative. 
 
C. ADAPTIVE DECISION TREE     CLASSIFR  
 
The decision tree classifier is one of the possible 
approaches to multistage decision making; table look-up 
rules .The basic idea involved in any multistage approach 
is to break up a complex decision into a union of several 

simpler decisions, hoping the final solution obtained this 
way would resemble the intended desired solution. 
 From graph A graph G = (V, E) consists of a finite, non-
empty set of nodes (or vertices) Vand a set of edges E. If 
the edges are ordered pairs (v,w) of vertices, then the     
graph is said to be directed. A directed graph with no 
cycles is called a directed acyclic graph. A directed (or 
rooted) tree is a directed acyclic graph satisfying the 
following properties: 
 
There is exactly one node, called the root, which no edges 
enter. The root node contains all the class labels. 
Every node except the root has exactly one entering edge. 
There is a unique path from the root to each node 
A node with no proper descendant is called a leaf (or a 
terminal). All other nodes (except the root) are called 
internal nodes .The depth of a node v in a tree is the 
length of the path from the root to v. The height of node v 
in a tree is the length of a largest path from v to a leaf. 
The height of a tree is the height of its root. The level of a 
node v in a tree is the height of the tree minus the depth of 
v. An ordered tree is a tree in which the sons of each node 
are ordered (normally 
from left to right). 
 
The possible drawbacks of DTC, on the other hand, are: 
when the number of classes 
is large, can cause the number of terminals to be much 
larger than the number of actual classes and thus increase 
the search time and memory space requirements. Errors 
may accumulate from level to level in a large tree. 
Finally, there may be difficulties involved in designing an 
optimal DTC. The 
performance of a DTC strongly depends on how well the 
tree is designed. 
 
V. DESIGN OF A DECISION TREE CLASSIFIER 
 
The main objectives of decision tree classifiers are: 1) to 
classify correctly as much of the training sample as 
possible; 2) generalize beyond the training sample so that 
unseen samples could be classified with as high of an 
accuracy as possible; 3) be easy to update as more 
training sample becomes available 4) and have as simple 
a structure as possible. When a Bayes point of view is 
pursued, the optimal tree design may be posed as the 
following optimization problem 
 

Minimize
, ,

( , , ) 

 
where Pe is the overall probability of error, T is a specific 
choice of the tree structure, F and d are  the feature 
subsets and decision rules to be used at the internal nodes, 
respectively. The implication of the above constraint is 
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that, with a limited training sample size, the accuracy of 
the estimates of class conditional densities may 
deteriorate as the number of features increases. This is 
also known as the Hughes phenomena But, if one is 
allowed to select different feature subsets for 
differentiating between different groups of classes (i.e., a 
tree structure), one may be able to obtain even smaller 
probabilities of error than those predicted by Bayes 
decision rule. 
 
The above optimization problem can be solved in two 
steps 
 
Step 1: for a given T and F, find d* = d*(T, F) such that 
 P  (T, F, d* (T,F ) ) = min P  (T, F, d) 

d 
Step 2: Find T* and F* such that 
P   (T*, F*, d* (T*, F*)) = min P  (T, F, d*(T, F)) T, F 
It should be noted here that no mention of time 
complexity or computation speed has been made so far. 
Some of the common optimality criteria for tree design 
are: minimum error rate, min-max path length, minimum 
number of nodes in the tree, minimum expected path 
length, and maximum average mutual information gain. 
The optimal tree is constructed recursively through the 
application of various mathematical programming 
techniques such as dynamic programming with look 
ahead (or back) capabilities to approach global optimality. 
In top-down approaches, the design of a DTC reduces to 
the following three tasks: 
 

 The selection of a node splitting rule. 
 The decision as to which nodes are terminal. 
 The assignment of each terminal node to a class 

label. 
 
VI.PERFORMANCE ANALYSIS 
 
Simulation setting includes a Monte-Carlo set of10,000 
channel realizations, where two time-synchronized nodes, 
uniformly randomly placed into a square area of1 km, 
exchange packets. The setting includes two horizontal and 
two vertical obstacles of length 20 m, also uniformly 
randomly placed into the square area, such that a LOS 
always exists between the two nodes. In each simulation, 
we consider a packet of 200 symbols of duration Ts =10 
msec and bandwidth B = 6 kHz transmitted at a 
propagation speed of c = 1500 m/sec. To model 
movement In the channel(dealt with by forming groups l), 
during packet reception he two nodes move away from 
each other at constant relative speed of 1 m/sec, and is 
considered as the LOS distance between the nodes when 
the 100th symbol arrives .For each channel realization 
and node positions, find the LOS distance between the 

two nodes,.Based on the position of nodes and obstacles, 
we identify ONLOS links as single reflections from 
obstacles and determine v3 as the average delay of the 
found ONLOS links. We use TLIR = 0:1 sec and we 
randomize v2 according to a uniform distribution between 
v1and   v1 +  TLIR. For the other distribution parameters 
v .Then determine v ,			m = 1, 2,3 as an integer between 1 
and 6 with equal probability (i.e., G =6 )and ,m 
v =1,2,3		uniformlydistributedbetween0and, 
.Tosimulatechannel attenuation v = 15, v =1:5 dB/km 
(considering a carrier frequency of 15 kHz ),and set ∈ to 
be zero-mean Gaussian with variance 5=dB2//_Pa@1m. 
The source power level of 100 dB//_Pa@1m and a zero-
mean Gaussian ambient noise with power20 
dB//_Pa@1m, such that the signal-to-noise ratio (SNR) at 
the output of the channel is high. To obtain the lower 
bound on RSS-based distance, i = 1, . . . ,200, the 
attenuation model is given as 	dB/km. In Fig. 2, The PD is 
then estimated by setting a detection threshold to identify 
the arrival of the first path. Localization based on 
triangulation is performed where the node is first assumed 
to be located in the center of a rectangular area. When the 
location of anchor nodes is almost collinear. TOA 
measurements from different signals considerable 
reduction in measurement errors. The empirical detection 
probabilities for ONLOS and non  
 

 
 
                      Fig 2 Time of arrival 
 
In fig 3 To find LOS signal where two time-synchronized 
nodes, uniformly randomly placed into a square area of 
1km, exchange packets. The setting includes two 
horizontal and two vertical obstacles of length 20 m, also 
uniformly randomly placed into the square area, such that 
a LOS always exists between the two nodes. For each 
channel realization and node positions, we find the LOS 
distance between the two nodes, and determine		v =
X  
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Fig 3 .LOS 
In fig 4 To find Non line of sight signal the signal arrives 
from the reflection off a rock referred to as object-related 
NLOS that power attenuation in the LOS link is smaller 
than in NLOS links. From Fig.6, The empirical detection 
probabilities 4 for LOS (LOS (EM)) and SNLOS (SNLOS 
(EM)) links, the total detection probability (ALL (EM)), 
which is calculated as the rate of  correct classification (of 
any link).Adaptive decision tree classifier, as well as the 
results for classification without prior identification of 
ONLOS links (No ONLOS ID), i.e., without the first step 
of our algorithm. Then latter, we consider two cases: 1) M 
= 2 and 2) M ¼=3, where in the second case ONLOS 
links are considered as a separate class . And observe the 
constrained decision tree classifier achieves a significant 
performance gain compared to the K-means algorithm 
used in the initialization process  Fig  
 

 
 

Fig 4. NLOS 
Results show that for the former, the detection rate is 
more than 92 percent for both LOS and SNLOS. Observe 
the performance degradation for the first step for ONLOS 
identification is not performed. This degradation is more 
significant when ONLOS links are considered as SNLOS 
links, i.e., when M = 2.To find ONLOS and NON-
ONLOS based on the position of nodes and obstacles, we 
identify ONLOS links as single reflections from obstacles 
and determine  the average delay of the ONLOS links. 

ONLOS link identification are based on 1) detection 
probability of non-ONLOS links	ONLOS link sand 2) 
detection probability of ONLOS links.In Fig. 7, we show 
the empirical complimentary 
First, limit the number of features to be used at each 
stage. Secondly, for the sake of accuracy, specify 
tolerable error probabilities at each stage. Obviously the 
choice of linear classifiers and a binary tree structure is 
made to decrease computational complexity and time and 
thus to increase the speed. 

               

                                     Fig 5.  LOS Detected 
The Outlier method outperforms the naïve approaches of 
using the average or minimum value of X, where the 
latter performs extremely poorly for large values For 
example, the proposed classifier achieves7 m in 90 
percent of the cases, compared to 11.2 m when using the 
Outlier method, and the results are close to the HCRB. 
 

 
 
Fig 5. Classification results: (a) d  

 
b)d  
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Fig.6Empiricaldetection probabilities of LOS and SNLOS 

 
Such an improvement immediately translates into better 
localization performance as PD estimation errors 
significantly decrease. Due to cost decreases the tree 
structure get increased. Since even for moderately small 
numbers of features and classes, the number of possible 
trees is astronomically large, they suggested two 
restrictions to reduce the size of the search space. 
 

 
Fig. 7. Cost is minimum 

 
Again, using a distance measure, such as Bhattacharyya 
distance, classes at each node are divided into two groups. 
Then, using an iterative procedure with an initial guess, a 
classifier is found that provides minimum probability of 
error. 

 
 VI. CONCLUSION 
 
In this project the variation of propagation delay 
Measurements due to continuous motion of nodes at sea 
and classify the former into three classes: line-of-sight, 
sea surface- or bottom-based reflections (SNLOS), and 
object based reflections (ONLOS). We presented a two-
step classifier which first compares PD-based and 
received signal strength-based ranging to identify ONLOS 
links, and then, for non-ONLOS links, classifies PD 

measurements into LOS and SNLOS paths, using a 
adaptive decision tree classifier. We also offered a 
heuristic approach to efficiently maximize the log-
likelihood function, and formalized the Crame´r-Rao 
Bound to validate the performance of our method using 
numerical evaluation. The simulation and sea trial results 
confirmed that our classifier can successfully distinguish 
between ONLOS and non-ONLOS links, and is able to 
accurately classify PD measurements into LOS and 
SNLOS paths 
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